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Scheme 1. Reported syntheses of dinaphthothiophene 1.
1. Introduction

Dinaphthothiophene 1 can be classified as a sulfur-containing
heteroaromatic system with a unique structure. Despite its helical
structure, the molecule does not exhibit optical activity due to ra-
pid racemization at ambient temperature.1,2 The molecule has re-
ceived much attention recently due to its potential as a precursor
for the synthesis of axially chiral binaphthyl derivatives, which
are effective chiral building blocks in asymmetric reactions.2,3

A number of dinaphthothiophene syntheses have been reported
in the literature as outlined in Scheme 1. For example, in chrono-
logical order, Tominaga and co-workers reported the synthesis of
dinaphthothiophene derivatives via the photocyclization of 2.4 La-
ter Murata et al. reported that the reaction between the lithiated
binaphthyl 3 and sulfur provided dinaphthothiophene 1 in 19%
yield.5 De Lucchi et al.6 and Smith et al.7 reported the application
of the Newman–Kwart thermal rearrangement of the dimethyl-
thiocarbamate of binaphthol 4 to provide the desired product 1.
This approach was later improved by Hayashi and co-workers
and the yield was increased to 68%.3 In 1999, Otsubo and co-work-
ers8 reported an approach via the flash vacuum pyrolysis of diethy-
nyl thiophene 5. Finally, Matzger and co-workers9 employed a
cascade Bergman cyclization of 6 to furnish dinaphthothiophene
1 in trace amount.

Our research focuses on the development of new methodology
towards helical conjugated structures.10 Interestingly, it was re-
ported, by Zeller and Petersen,11 that the oxidative photocycliza-
tion of diphenyl sulfide could lead to dibenzothiophene. It was
envisioned that such an approach could be applied for the direct
synthesis of dinaphthothiophene 1. Retrosynthetic disconnection
at the C1–C10 bond of dinaphthothiophene suggested that the pre-
cursor for photochemical reaction could be dinaphthyl sulfide 7
which could be derived straightforwardly from the acid-mediated
ll rights reserved.

chang).
nucleophilic aromatic substitution between 2-naphthol 8 and 2-
naphthalenethiol 9 (Scheme 2).12

2. Result and discussion

The reaction of 2-naphthol 8 and 2-naphthalenethiol 9 was thus
carried out in the presence of p-TsOH in refluxing toluene for 2 h to pro-
vide the desired dinaphthyl sulfide 7 in 97% yield. The sulfide 7 was
then subjected to oxidative photocyclization in the presence of I2 and
propylene oxide (PO), Scheme 3.11,13 Conditions for the oxidative
photo-cyclization process and yields are summarized in Table 1.
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Scheme 3. Synthesis of dinaphthothiophene 1.

Table 1
Conditions and yields of the oxidative photocyclization reaction of dinaphthyl sulfide
7a

Entry Time (min) I2 (equiv) PO (equiv to I2) Yield % (conversion %)b

1 10 1.0 10.0 79 (48)
2 20 1.0 10.0 83 (78)
3 30 1.0 10.0 85 (87)
4 40 1.0 10.0 84 (89)
5 60 1.0 10.0 86 (88)
6 30 0.8 10.0 82 (86)
7 30 1.2 10.0 85 (91)
8 30 1.5 10.0 84 (92)
9 30 1.2 0.0 81 (80)

10 30 1.2 5.0 85 (90)

a The reaction was conducted in a 1 L Hanovia 450 W medium pressure Hg lamp
photochemical reactor. All experiments were performed on 1 mmol scale at a
concentration of 1 mM.

b The % conversion refers to the percentage of reacted starting material; the %
yield refers to the percentage of the product from the reacted starting material.
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Scheme 2. Retrosynthetic analysis of dinaphthothiophene 1.
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It was found that a stoichiometric amount of I2 was required for
the reaction. On 1 mmol scale, the appropriate reaction time was
30 min. A shorter reaction time led to a decreased percent conver-
sion whilst prolonged irradiation did not increase the yield and %
conversion, but did result in the formation of a brownish stain
on the surface of the quartz tube and reactor. Addition of propylene
oxide did not significantly improve the percent yield and conver-
sion, but it did influence the purity of the crude product.
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Figure 1. ORTEP diagram
The mechanism of the reaction is proposed to be similar to that
reported by Zeller and Petersen11 (Scheme 4). Electrocyclic ring
closure of dinaphthyl sulfide 7 provided the cyclic intermediate
10 which, upon reaction with I2, yielded the dinaphthothiophene
1. Propylene oxide served as a HI-quencher.13 The decreased extent
of aromatic energy in naphthalene is believed to facilitate the
photo-electrocyclic process and this provides a rationalization for
the better yield and higher conversion when compared to the reac-
tion of diphenyl sulfide.

This oxidative photocyclization was a very efficient and conve-
nient procedure for the construction of other dinaphthothiophene
derivatives. For example, compounds 11, 12 and 13 could be pre-
pared by photocyclization of their corresponding dinaphthyl sul-
fides in 84%, 83% and 80% yields, respectively.
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Compounds with complicated skeletons, such as 16, could also
be accessed via this oxidative photocyclization method. Indeed,
treatment of 2,3-naphthalenediol 14 with 2-naphthalenethiol 9
in refluxing toluene in the presence of p-TsOH yielded 15 (87%),
which upon oxidative photocyclization by the aforementioned pro-
cedure provided 16 in 83% yield (Scheme 5).

X-ray analysis of compound 1614 (Fig. 1) revealed an interesting
structural feature where the product adopted a conformation that
possessed a plane of symmetry, rather than a C2-axis. A detailed
investigation of this molecule as a new type of organic material
is currently in progress.

In conclusion, an alternative synthesis of dinaphthothiophene
has been described. The method is highly efficient and can be ap-
plied to the synthesis of a variety of dinaphthothiophene
derivatives.

3. General procedures15

3.1. Synthesis of dinaphthyl sulfide 7

A solution of 2-naphthol 8 (1.24 g, 8.60 mmol) and 2-napht-
halenethiol 9 (2.07 g, 12.90 mmol) in the presence of p-TsOH
(1.64 g, 8.60 mmol) was refluxed in toluene for 2 h. The reaction
was cooled down and then quenched with saturated NaHCO3 solu-
tion. The mixture was then extracted with CH2Cl2 (3 times), and
the combined organic extracts were washed with H2O, dried over
Na2SO4 and then evaporated to dryness. The crude product was
purified by column chromatography (SiO2, hexane as eluent) to
yield dinaphthyl sulfide 7 (2.39 g, 97% yield).

3.2. Oxidative photocyclization of diaryl sulfide: synthesis of
dinaphthothiophene 1

A solution of dinaphthyl sulfide 7 (300 mg, 1.05 mmol) and I2

(320 mg, 1.26 mmol) in cyclohexane (1000 mL) was charged into
a 1 L Hanovia photochemical reactor equipped with a 450 W med-
ium pressure Hg lamp. The solution was purged with argon for
20 min. Then, propylene oxide (366 mg, 0.44 mL, 6.30 mmol) was
added and the solution was irradiated for 30 min. Upon comple-
tion, the solution was evaporated to dryness and the crude product
was subjected to column chromatography (SiO2, hexane as eluent)
to yield dinaphthothiophene 1 (228 mg, 85% yield, 90%
conversion).
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